Charge-Coupled Devices

Surface Potential
Charge Transfer
Charge Input / Output
Charge Transfer Efficiency
Surface Potential

- $V_D = 0 \quad V_G = 0$
- $V_D = 0 \quad V_G = 5 \text{ V}$
- $V_D = 5 \text{ V} \quad V_G = 5 \text{ V}$
- $V_D = 5 \text{ V} \quad V_G = 8 \text{ V}$

- Channel
- No Channel
- $\phi_s \sim 2\phi_F$
- $\phi_s < V_G$
- $\phi_s \sim 2\phi_F + V_D$

© D.K. Schroder, Semiconductor Device Theory - 2
Surface Potential

- Surface potential depends on:
 - Gate voltage
 - Flatband voltage
 - Doping density
 - Oxide thickness
 - Inversion charge density

\[V_G = V_{FB} + V_{ox} + \phi_s \]

\[V_{ox} = -\frac{Q_s}{C_{ox}} = -\frac{Q_n + Q_b}{C_{ox}} \]

\[Q_b = -qN_A W; \quad Q_n < 0 \]

\[\phi_s = V' - V_o \left(\sqrt{1 + \frac{2V'}{V_o}} - 1 \right) \]

\[V' = V_G - V_{FB} + \frac{Q_n}{C_{ox}} \]

\[V_o = \frac{qK_s \varepsilon_o N_A}{C_{ox}^2} \]

Thermally generated electrons flow to ground
MOS Capacitor

- Figure (a) shows a MOS capacitor with a p-type semiconductor and an initial charge Q_N.
- Figure (b) illustrates the electric field E and the Fermi levels F_P and F_N.
- Figure (c) depicts the electric field E and the potential $q\phi_{s0}$, $q\phi_{s1}$, and $q\phi_{s2}$.

© D.K. Schroder, Semiconductor Device Theory - 2
CCD Charge

- Charge is confined to the potential well

![Diagram showing CCD Charge with potential wells labeled $\phi_s = 2\phi_F$, ϕ_{s1}, ϕ_{s2}, ϕ_{s3}, and V_{G1} in the x-axis and E in the y-axis.](image)
Charge Confinement

- Charge must be confined in the \(x\), \(y\), and \(z\) directions.

- One way to confine in the \(x\) direction is with gate voltages.

\[\phi_s = V'_G + \frac{Q_n}{C_{ox}} - V_0 \left[\sqrt{1 + \frac{2(V'_G + Q_n / C_{ox})}{V_0}} - 1 \right] \]

- Maximum charge density without spilling into adjacent wells is

\[Q_{n,m} = -C_{ox}(V_{G2} - V_{G1}) \]
Charge Confinement

- **x direction**
 - Charge confined by gate voltage

- **y direction**
 - Charge confined by oxide thickness
Charge Input

- Diode reverse biased
- Input voltage applied between G_1 and G_2
- Diode briefly zero biased and charge spills into G_2 potential well
- Diode reverse biased and excess charge spills into diode

\[
\phi_s = V' + \frac{Q_n}{C_{ox}} - V_0 \left[\sqrt{1 + \frac{2(V' + Q_n / C_{ox})}{V_0}} - 1 \right]
\]

- Surface potential under gates G_1 and G_2 is equal, giving

\[
Q_n = -C_{ox} (V_{G2} - V_{G1}) = -C_{ox} V_i
\]
Signal charge routed into floating source

V_S detected with high input impedance MOSFET

$\Delta V_{out} = Q_n / C$
Three-Phase Charge Transfer

- At any time there is a barrier between charge packets so the charge packets do not mix
- Gate voltage \Rightarrow charge transfer

\[V_{G1} \quad \phi_1 \quad V_{G2} \quad \phi_2 \quad V_{G1} \quad \phi_3 \]

\[t=t_1 \quad t=t_2 \quad t=t_3 \quad t=t_4 \]
4-Phase, 2-Phase Charge Transfer

- Four-phase: need four waveforms
- Two-phase: need asymmetry
 - Different oxide thickness
 - Implanted acceptor ions
Charge Transfer Efficiency

- Charge transfer inefficiency per elemental transfer ε
 - Fraction of charge left behind when charge is transferred from one well to the next
 - $n =$ number of elemental transfers
 - $P =$ number of clocking phases
 - $N =$ number of stage transfers
 - $\alpha =$ charge transfer inefficiency per stage
 - $n = PN$ and $\alpha = P\varepsilon$

- After N transfers, charge is no longer localized in one well, but is spread out over several trailing wells

\[
D_{i,N} = \frac{Q_i}{Q} = \frac{[N!(1-\alpha)^i\alpha^{N-i}]}{[(N-i)!i!]}
\]

- After N stage transfers

\[
\text{Deficit} = 1 - D_{N,N} = 1 - (1 - \alpha)^N \\
= 1 - (1 - P\varepsilon)^{n/P} \approx N\alpha = n\varepsilon
\]
Charge Transfer

- Self induced drift
 ⇒ fringing field
 ⇒ diffusion
- Charge left behind mixes with following charge packet

\[
\begin{align*}
Q_i &= 1 & N = 0 \\
Q_i &= 1 - \alpha & N = 1 \\
Q_i &= \alpha^2 2\alpha(1-\alpha) & N = 2
\end{align*}
\]
Interface State Trapping

- Interface state trapping important charge transfer inefficiency mechanism
- When charge packet enters potential well, electrons are captured by interface states
- Capture is relatively independent of energy and very fast

\[\tau_c = \frac{1}{\sigma_n v_{th} n_s} \]

\[\tau_c = 10^{-10} \quad s : n_s = 10^{18} \text{ cm}^{-3} \]

\[\sigma_n = 10^{-15} \text{ cm}^2; v_{th} = 10^7 \text{ cm / s} \]
Interface State Trapping

- When charge packet leaves potential well, some electrons are emitted by interface states
- Emission is dependent on energy
- Charge transfer efficiency improved by bias charge (fat zero)
 - Small amount of charge always in potential wells

\[
\tau_e = \frac{\exp(\Delta E / kT)}{\sigma_n v_{th} N_c} = 10^{-11} \exp(\Delta E / kT)
\]

\[
N_c = 10^{19} \text{ cm}^{-3}; \quad \sigma_n = 10^{-15} \text{ cm}^2
\]

\[
v_{th} = 10^7 \text{ cm/s}
\]
Bulk Channel CCD

- Charge is transferred in the n-semiconductor, not at the surface.
- No interaction with interface states \(\Rightarrow \) higher transfer efficiency.

\[
\begin{align*}
\phi_1 & \quad \phi_2 \quad \phi_3 \\
0 & \quad V_n \\
p & \quad n^+ \\
p & \quad n
\end{align*}
\]

Signal charge packet

\[
\begin{align*}
V_G & \quad n \\
V_G & \quad p
\end{align*}
\]
Bulk Channel CCD

- When the well fills, the charge moves towards the surface
- Leads to interaction with interface states

[Diagram of Bulk Channel CCD with labels and equations]
Review Questions

- What happens to the surface potential as a function of time after an MOS-C is driven into deep depletion?
- How is charge confined in the x and y-direction?
- How are charge input and output implemented?
- What affects charge transfer?
- Why is charge transfer important?
- How can charge transfer efficiency be improved?
- What three mechanisms determine charge transfer?
- How does a bulk CCD differ from a surface CCD?