Power Considerations

Power Dissipation
Active Versus Passive Power
“On” and “Off” Currents
High-\(\kappa\) Dielectrics
Low-\(\kappa\) Dielectrics
Power Dissipation in RC Circuit

\[V_o = V_1 \left(1 - e^{-t/RC}\right) \]

\[i(t) = C \frac{dV_o}{dt} = \frac{V_1 - V_o}{R} = \frac{V_1}{R} e^{-t/RC} \]

\[P = \int_0^\infty i(t)^2 R dt = \frac{V_1^2}{R} \int_0^\infty e^{-2t/RC} dt = \frac{CV_1^2}{2} \]

Independent of R!

Energy in C = \[\int_0^{V_1} Q dV_o = \int_0^{V_1} CV_o dV_o = \frac{CV_1^2}{2} \]

Energy in supply = \[\int_0^\infty V_1 i(t) dt = \frac{1}{R} \int_0^\infty V_1^2 e^{-t/RC} dt = CV_1^2 \]
CMOS Power Dissipation

- Replace transistor by resistor and switch
- Energy in one cycle
 - Charging $0 \Rightarrow 1$
 - CV^2 from power supply
 - $CV^2/2$ dissipated in R
 - $CV^2/2$ stored on C
 - Discharging $1 \Rightarrow 0$
 - Power supply does nothing
 - $CV^2/2$ dissipated in R
 - C has no energy
- Total “dissipated” CV^2
- Dissipated power: fCV^2
CMOS Power Dissipation

- Power dissipation sources:
 \[P = P_{\text{switch}} + P_{sc} + P_{off} + P_G \]
 \[P_{\text{switch}} = \alpha f C V_{DD}^2; \quad P_{sc} = I_{sc} V_{DD}; \]
 \[P_{off} = I_{off} V_{DD}; \quad P_G = I_G V_{DD} \]

\(\alpha\): switching activity; \(I_{sc}\): short circuit path when n and p-channel MOSFETs are “on”
\(I_{off}\): drain leakage current and subthreshold leakage current when device is “off”
\(I_G\): gate leakage current

- Reduce power by reducing
 - Supply voltage \(V_{DD}\) \(\downarrow\); need to reduce \(V_T\) to maintain drive current
 - Capacitance \(C\)
 - Off current \(I_{off}\) - increase \(V_T\)
 - Frequency \(f\) \(\downarrow\); parallel architectures

© D.K. Schroder – Advanced MOS Devices
"On" – "Off" Current

- **Subthreshold**
 - Subthreshold slope = m; Subthreshold swing $S = 1/m$

\[I_D = I_T e^{q(V_G-V_T)/nkT} \]
\[I_{off}(V_G = 0) = I_T e^{-qV_T/nkT} \]

\[S = \frac{dV_G}{d[\log(I_D)]} = 2.3nkT/q \]
\[= 60n(T/300) \text{ mV/decade of } I_D \]

- **Above threshold**

\[I_{Dsat} = I_{on} = \frac{W\mu_{eff}C_ox}{2L} (V_G - V_T)^2 \]

Want I_{on} high, I_{off} low!
“On” Current

- **W/L ~ constant**
- **$\mu_{eff} \downarrow$**
 - Reduced drive current
- **$V_G \downarrow$**
 - Reduced electric field
 - Reduced power
 - Reduced drive current
 - Increased delay time
- **$V_T \downarrow$**
 - Increased drive current
 - Increased “off” current

$$I_{on} = \frac{W}{2L} \mu_{eff} C_{ox} (V_G - V_T)^2$$

- **$(V_G-V_T) \downarrow$**
 - Reduced drive current
- **$C_{ox} \uparrow$ since $t_{ox} \downarrow$**
 - Increased drive current
 - Oxide leakage current
 - Boron penetration

I_{on} should not decrease!

© D.K. Schroder – Advanced MOS Devices
Threshold and Supply Voltages

- How has V_T changed with V_{DD}? Less than called for by scaling rules
- $V_{DD} - V_T$ is continually decreasing
The “off” current is due to subthreshold, punchtough, gate-induced drain leakage, drain junction leakage, and oxide currents.

I_{off} should not increase!
Dynamic \(V_T \) Control

- Forward bias \(V_{SB} < 0 \):
 - At \(V_G = 0 \), threshold voltage is high ⇒ low “off” current
 - At \(V_G > 0 \), threshold voltage is low ⇒ high “on” current

\[
V_T = V_{FB} + 2\phi_F + \gamma \sqrt{2\phi_F - V_{SB}}
\]

\(V_T \)↓ with forward-biased S/B junction!

![Graph showing current vs. voltage for different conditions](image)

© D.K. Schroder – Advanced MOS Devices
Propagated Delay Time

- Conflicting design requirements between reducing V_{DD}, V_T, I_{leak}, C, and increasing performance
- The propagation delay time is $t_d = \frac{C\Delta V}{I}$

$$t_d = \frac{CV_{DD}}{I_D}$$
$$= \frac{2LC}{W\mu_{eff}C_{ox}V_{DD}(1-V_T/V_{DD})^2}$$
$$= \frac{K}{C_{ox}V_{DD}(1-V_T/V_{DD})^2}$$

For low t_d want high V_{DD}, low V_T

Design space is shrinking!
Low - K Dielectrics

- Propagation delay along interconnects requires reduced K_{ox}
- Ideally $K = 1$ (air)
- Practically $K < 3.5$

$$\tau = RC = \frac{\rho L}{Wt} \frac{K_{ox} \varepsilon_0 LW}{t_{ox}} = \frac{\rho K_{ox} \varepsilon_0 L^2}{tt_{ox}}$$

Need low ρ and low K_{ox}
Low-K Dielectrics

- Low-K dielectrics reduce wiring capacitance ⇒ reduce power
 \[P = \alpha C f V^2 \]

- Low-K dielectrics tend to be “fluffy”
- To reduce the dielectric constant, introduce air pockets into the material
 - Dielectric constant
 - Hardness
 - Adhesion
 - Thermal expansion
 - Process compatibility
 - Swelling
Low – K Dielectrics

<table>
<thead>
<tr>
<th>K Value</th>
<th>Organic Polymers</th>
<th>Silsesquioxane Based</th>
<th>Silica Based</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9</td>
<td></td>
<td></td>
<td>SiO_2</td>
</tr>
<tr>
<td>3 – 4</td>
<td></td>
<td>FOX^{TM}</td>
<td>Fluorinated Silica</td>
</tr>
<tr>
<td>2.4 – 3</td>
<td>FLARE^{TM}</td>
<td>HOSP^{TM}</td>
<td>$\text{Aurora}^{\text{TM}}$</td>
</tr>
<tr>
<td></td>
<td>BCB</td>
<td></td>
<td>Coral^{TM}</td>
</tr>
<tr>
<td></td>
<td>SiLK^{TM}</td>
<td></td>
<td>Z3MS^{TM}</td>
</tr>
<tr>
<td>2 – 2.4</td>
<td>$\text{Porous SiLK}^{\text{TM}}$</td>
<td>IPS^{TM}</td>
<td>Orion^{TM}</td>
</tr>
<tr>
<td></td>
<td>PTFE</td>
<td>LKD^{TM}</td>
<td>$\text{Nanoglass}^{\text{TM}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XLK^{TM}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\text{Zirkon}^{\text{TM}}$</td>
<td></td>
</tr>
<tr>
<td>< 2</td>
<td></td>
<td></td>
<td>Aerogel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Xerogel</td>
</tr>
</tbody>
</table>

Propagation delay depends on metal conductivity and interlevel dielectric constant.

- Al: $\rho = 3 \, \mu\Omega\cdot\text{cm}$
- Cu: $\rho = 1.7 \, \mu\Omega\cdot\text{cm}$
- SiO$_2$: $K_{ox} = 4$
- Low K: $K_{ox} = 2$
- Al/Cu: 0.8 μm thick
- Al/Cu: 43 μm long

Ultimate Low - K

- $K \approx 1.9$
- Apply and heat liquid copolymer
- Assembles into two-dimensional layer
- Ion bombardment forms it into long tunnels
- Acid flush leaves clean cavities
Why do we need high-K dielectrics?

\[I_D = \frac{W\mu_{\text{eff}}C_{\text{ox}}}{L} (V_G - V_T)^2 = \frac{W\mu_{\text{eff}}K_{\text{ox}}\varepsilon_o}{L t_{\text{ox}}} (V_G - V_T)^2 \]

With scaling
- W and L decrease same amount
- μ_{eff} remains about the same or decreases
- $(V_G - V_T)$ decreases

To keep drain current constant
- t_{ox} decreases – oxide leakage current increases
- K_{ox} increases – thicker insulator, reduced oxide leakage current
High-K Dielectrics

- The dielectric constant, band gap and dielectric/Si barrier height are important.
- Tunneling probability
 \[T = \exp\left(-2t_{ox}\sqrt{\frac{2qm^*\phi_B}{\hbar^2}}\right) \]
- Need
 - High dielectric constant
 - High band gap
 - Low leakage current
 - Thermodynamic stability
 - Low flatband voltage shift
 - Good reliability
 - Good insulator/Si interface quality
 - High insulator/Si interface barrier
 - Process compatibility

High - K Dielectrics

There is a trade off between:
- Dielectric constant
- Band gap
- Oxide/Si barrier height
- Breakdown voltage

HfO$_2$ based dielectrics used in advanced devices

High - K Dielectrics

- Problems
 - Low band gap
 - Low barrier height
 - Low breakdown electric field
 - Poor insulator/Si interface
 - Thin intervening SiO₂ layer
 - Oxide charge
 - Low electron/hole mobility
 - Strained Si

- MOS process compatible?

Review Questions

- What determines CMOS power dissipation?
- What are “on” and “off” currents
- What determines propagation delay time?
- Why do we need low-\(K\) dielectrics?
- Why do we need high-\(K\) dielectrics?
- What are the conflicting demands of high \(on\) current and low \(off\) current?
- What are the conflicting demands of CMOS power dissipation and propagation delay time?